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Abstract. This study evaluates commonly used geostatistical methods to assess 
reproduction of hydraulic conductivity (K) structure and sensitivity under limiting 
amounts of data. Extensive conductivity measurements from the Cape Cod sand and 
gravel aquifer are used to evaluate two geostatistical estimation methods, conditional 
mean as an estimate and ordinary kriging, and two stochastic simulation methods, 
simulated annealing and sequential Gaussian simulation. Our results indicate that for 
relatively homogeneous sand and gravel aquifers such as the Cape Cod aquifer, neither 
estimation methods nor stochastic simulation methods give highly accurate point 
predictions of hydraulic conductivity despite the high density of collected data. Although 
the stochastic simulation methods yielded higher errors than the estimation methods, the 
stochastic simulation methods yielded better reproduction of the measured In (K) 
distribution and better reproduction of local contrasts in In (K). The inability of kriging to 
reproduce high In (K) values, as reaffirmed by this study, provides a strong instigation for 
choosing stochastic simulation methods to generate conductivity fields when performing 
fine-scale contaminant transport modeling. Results also indicate that estimation error is 
relatively insensitive to the number of hydraulic conductivity measurements so long as 
more than a threshold number of data are used to condition the realizations. This 
threshold occurs for the Cape Cod site when there are approximately three conductivity 
measurements per integral volume. The lack of improvement with additional data suggests 
that although fine-scale hydraulic conductivity structure is evident in the variogram, it is 
not accurately reproduced by geostatistical estimation methods. If the Cape Cod aquifer 
spatial conductivity characteristics are indicative of other sand and gravel deposits, then 
the results on predictive error versus data collection obtained here have significant 
practical consequences for site characterization. Heavily sampled sand and gravel aquifers, 
such as Cape Cod and Borden, may have large amounts of redundant data, while in more 
common real world settings, our results suggest that denser data collection will likely 
improve understanding of permeability structure. 

Introduction 

A short supply of hydrologic data prevents detailed descrip- 
tion of most groundwater systems. For a typical groundwater 
modeling effort, hydrologic parameters of a large aquifer vol- 
ume must be assigned based on just a few point measurements 
(a volume of 10 km 3 described by 40 measurements, for exam- 
ple). Even the most heavily sampled aquifers, such as the 
shallow aquifer at the Macrodispersion Experiment (MADE) 
site in Mississippi with over 2200 hydraulic conductivity mea- 
surements, have data describing no more than 1% of the total 
volume. The lack of detailed subsurface data adds significant 
uncertainty to groundwater simulation results. For example, 
Rehfe!dt et al. [1992] estimated that hydraulic conductivity (K) 
measurements for 400,000 nodes would be needed to make an 
accurate deterministic model of groundwater flow and contam- 
inant transport at the MADE site. The uncertainty of ground- 
water simulation results is often largely attributable to spatial 
variability in hydraulic conductivity. Hydraulic conductivity 
controls both advective transport and dispersive transport 
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[Neuman, 1990] yet can vary over 6 orders of magnitude at a 
single site. 

Efforts to overcome sparse hydrologic data often rely on 
geostatistical methods such as kriging. Kriging is designed to 
make estimates at unsampled locations and is now commonly 
used as a tool for expanding sparse spatial data. In addition, a 
variety of other geostatistical methods are currently employed 
in groundwater modeling efforts to assign hydraulic conductiv- 
ity values. Methods such as ordinary kriging that produce just 
a single field of values are known as "estimation" methods, 
while methods that produce many alternate fields of values are 
commonly called "stochastic simulation" methods. 

What is the relative value of using different geostatistical 
methods to predict unsampled hydrologic parameter values? 
This question has only recently begun to receive attention. Ritzi 
et al. [1994] evaluated the ability of three indicator-based 
geostatistical methods to predict the occurrence of high- 
hydraulic-conductivity facies in a glacially deposited aquifer. 
Bornan et al. [1995] evaluated the ability of four geostatistical 
methods to produce hydraulic conductivity fields that, when 
used as input to a transport model, yielded breakthrough 
curves in agreement with tracer tests in a layered coastal plain 
aquifer. Both of these studies found that in comparison to 
estimation methods, stochastic simulation methods produced 
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more realistic continuity structure and gave the additional ad- 
vantage of allowing flow simulation to be stochastic. The sen- 
sitivity to conditioning data has also received attention. Smith 
and Schwartz [1981] examined how increasin. g amounts of hy- 
draulic conductivity data affect the variability of contaminant 
arrival times in a synthetically generated •two-dimensional 
aquifer. Clifton and Neuman [1982] examined how the predic- 
tion error in hydraulic head is affected by conditioning to 
spatial correlation of hydraulic conductivity measurements, 
measured flow rates, and measured heads. However, the influ- 
ence of the amount of conditioning data on real-world hydrau- 
lic conductivity estimation has not been examined. 

In this study we focus on a glacially deposited sand and 
gravel aquifer and examine the ability of some common 
geostatistical methods to identify known hydraulic conductivity 
structures. Our study is unique in that we directly test the 
accuracy of these methods to infer hydraulic conductivity in a 
real-world aquifer. We use detailed hydraulic conductivity 
measurements from the Cape Cod aquifer test site in Massa- 
chusetts [Hess et al., 1992] as the ground truth data for our 
analyses. 

The Cape Cod data set is used to address two principal 
questions: (1) to what degree can some common geostatistical 
methods based on the variogram accurately predict hydraulic 
conductivity, and (2) how much does predictive capability im- 
prove with increasing amounts of data? Our results indicate 
that for relatively homogeneous sand and gravel aquifers such 
as the Cape Cod aquifer, neither estimation nor stochastic 

simulation methods give highly accurate point predictions of 
hydraulic conductivity, although stochastic simulation methods 
do realistically simulate observed hydraulic conductivity struc- 
ture. The stochastic simulation methods produced higher esti- 
mation error than the estimation methods by approximately 
30%. Higher point errors for the stochastic methods were 
offset by better reproduction of the measured distribution of 
the natural logarithm of hydraulic conductivity, In (K), and 
better reproduction of local contrasts in In (K). Our results 
also indicate that estimation error is relatively insensitive to the 
number of conditioning data as long as more than a threshold 
number of hydraulic conductivity measurements are used to 
condition the realizations. This threshold occurs for the Cape 
Cod site when there are approximately three measurements 
per integral volume. The point In (K) measurements, rather 
than model variogram parameters, appear to have primary 
control over estimation error. 

The Cape Cod Site 
Because high-hydraulic-conductivity sediment structures 

such as sand and gravel layers have been found to often control 
mass transport in sedimentary aquifers [Anderson, 1990; Fogg, 
1986], we felt it was important to use data that contain natural 
conductivity patterns. The hydraulic conductivity measure- 
ments we used were taken in the upper 7 m of the saturated 
zone at the Cape Cod aquifer. The Cape Cod test site was 
developed beginning in the early 1980s for detailed analysis of 
groundwater movement and contaminant transport. The sur- 
ficial aquifer is the principal aquifer at the site and is composed 
of permeable unconsolidated sediments about 100 m thick. 
The upper 30 m of the aquifer contains stratified sand and 
gravel outwash depos!ted during the last glacial retreat 
[LeBlanc et al., 1991; Hess et al., 1992]. 

The hydraulic conductivity measurements from Cape Cod 
were taken with a flowmeter in 16 long-screened wells adjacent 
to the main tracer test area. None of the wells are separated by 
more than 25 m, as is shown in Figure 1. The complete flow- 
meter data set consists of 668 hydraulic conductivity measure- 
ments. The downhole flowmeter is currently the best available 
technology for taking in situ hydraulic conductivity measure- 
ments in the saturated zone and has been found to yield re- 
producible hydraulic conductivity measurements [Rehfeldt et 
al., 1989]. At the Cape Cod site, flowmeter measurements have 
a mean hydraulic conductivity of 0.11 cm/s. Measurements of 
hydraulic conductivity taken with a permeameter using core 
samples yielded a much lower mean hydraulic conductivity of 
0.035 cm/s, possibly because core samples containing large 
gravels were excluded from testing [Hess et al., 1992]. We 
decided not to use the permeameter measurements in this 
study because the higher hydraulic conductivity samples were 
excluded. 

Measurements taken with a flowmeter contain significant 
error. This error originates from random errors in the flow- 
meter device as well as from incorrectly estimated aquifer and 
well loss parameters used in the calculations. Rehfeldt et al. 
[1989] calculated error from replicate flowmeter tests at the 
MADE site and found that while trends in the In (K) profiles 
were well reproduced, random errors having a standard devi- 
ation of 0.21 occurred for measurements in the range of -4 < 
In (K) < 0. This is the same range as that found at Cape Cod. 

Although the flowmeter can potentially yield hydraulic con- 
ductivity measurements at a fine scale, the aquifer volume 
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described by each measurement at Cape Cod is relatively large. 
When calculating hydraulic conductivity from the flowmeter 
measurements, flow to the well is assumed to be horizontal, 
and the aquifer is divided into a series of horizontal layers. At 
Cape Cod the layers were assumed to be 15 cm in height. The 
pumping radius of influence, which is the horizontal scale of 
support for the flowmeter measurement, can be estimated with 
the following equation [RehfeMt et al., 1989]: 

K•/• -/t r= 1.5 (1) 

where 

r radius at which drawdown is -10% of drawdown at 

the well face; 

Kp depth-averaged hydraulic conductivity for the whole 
aquifer; 

H thickness of the aquifer; 
S storage coefficient, or specific yield; 
t time to steady state water levels. 

The radius of influence is calculated to be 7.2 m when using a 
depth-averaged hydraulic conductivity of 0.11 cm/s, a thickness 
of 7 m, a specific yield of 0.1, and a time of 5 min, a typical time 
for water levels to reach quasi-steady state during pumping 
(K. M. Hess, personal communication, 1995). Because many of 
the wells at Cape Cod are separated by only 1-2 m, the flow- 
meter measurements have much horizontal overlap. Despite 
this overlap, which should cause neighboring values to be sim- 
ilar, the variance of the flowmeter measurements is higher than 
the variance of the laboratory permeameter measurements. 
The variance of the In (K) measurements taken with the flow- 
meter is 0.24. In comparison, the variance for the permeameter 
measurements is 0.14, using samples 10 cm high and 5 cm in 
diameter. 

The error associated with the flowmeter measurements and 

the relatively large aquifer volume described by each measure- 
ment probably mean that the measured data capture large- 
scale trends present at the site but do not accurately reflect 
smaller-scale heterogeneities. Vertical heterogeneity will be 
more accurately reflected by the flowmeter measurements than 
horizontal heterogeneity because aquifer flow during the tests 
is largely horizontal. 

As an alternative to the flowmeter measurements, artificially 
generated hydraulic conductivity fields could be used as the 
ground-truth data upon which the hydraulic conductivity sim- 
ulations are based. Other authors have followed the practice of 
using synthetic hydraulic conductivity data [e.g., Scheibe and 
Freyberg, 1990]. The main advantage of using synthetic data is 
that the known reference field can be closely controlled. The 
main disadvantage is that the relationship between synthetic 
data and a natural aquifer is ambiguous. Extrapolation of re- 
sults to real-world settings is therefore difficult or impossible. 
A comparison of simulation methods can be made whether one 
is using measured or synthetic data. We chose to use the 
flowmeter measurements because their reproducibility and 
consistency of scale do allow some extrapolation of results to 
real-world settings. The extrapolation is limited by errors as- 
sociated with the measurements and the relatively large aqui- 
fer volume described by the measurements. However, even 
with these limits, the measured data provide a more valuable 
test than do synthetic data. 

Methods 

The first step in a geostatistical analysis is to determine 
descriptive statistics and spatial correlation. A geostatistical 
analysis treats the variable under consideration, Z as a spatially 
continuous function with a continuous correlation structure. 

Once the functions describing the mean and spatial correlation 
have been determined, then the prediction of Z at unsampled 
locations can proceed. A field of estimated values generated by 
a stochastic method such as simulated annealing or sequential 
Gaussian simulation is known as a "realization" because the 

estimated field of values is just one of many possible guesses at 
the true field of values. The measured data used to constrain a 

realization are "conditioning data," and if the measured values 
are assigned at their measurement locations, then the realiza- 
tion is "conditional." 

Partitioning of Data and Discretization of Site 

We allocated 396 of the 668 conductivity measurements, 
about 60%, for conditioning the simulations. The other 40%, 
or 272, of the conductivity measurements were then available 
for checking accuracy of the In (K) realizations. To gauge the 
worth of having more conditioning data, we used various frac- 
tions of the 60% to condition the realizations. The fractions of 

conditioning data that we used correspond to 5%, 10%, 20%, 
30%, 40%, 50%, and 60% of the complete (668) conductivity 
measurements. 

The 60% subset was chosen by randomly selecting from the 
complete data. Ten different 60% subsets were randomly gen- 
erated, and the one subset with sample statistics closest to the 
complete (100%) data was retained for use. The 60% subset 
has the same declustered In (K) variance as the complete data 
and a mean In (K) that is 1.1% lower than for the 100% data. 
Since the statistics of the conditioning data are close to the 
statistics of the complete data set, the magnitud e of estimation 
error that is directly the result of the geostatiStical method is 
high. Subsets containing 5%, 10%, 20%, 30%, 40%, and 50% 
of the complete data were then randomly selected from the 
60% subset to ensure that estimation error would be calculated 

at the same 272 points. In generating the 5%, 10%, 20%, 30%, 
40%, and 50% subsets, no consideration was given to whether 
or not the sample statistics of the subset match those of the 
complete data set. The 60% subset was already chosen to 
reflect the complete data, and we did not want to further mask 
the statistical instability that comes with smaller sample sizes. 

A fine three-dimensional grid was used to discretize the 
Cape Cod site, as is shown in Figure 1. The grid has 12,480 
nodes (10 x 26 x 48) with x, y, and z coordinate spacing of 
0.5 m, 1.0 m, and 0.15 m. The spacing is just fine enough so that 
only one measurement location falls into a cell. Each measure- 
ment was relocated to the center of its cell for the geostatistical 
simulations. 

Spatial Correlation Determination and Variogram Model 
Fitting 

Although there is a great deal of random variation, mea- 
surements of similar In (K) tend to be located near one an- 
other. As is standard for geostatistical practice [Deutsch and 
Journel, 1992], we used the variogram to express spatial corre- 
lation. We calculated the experimental variogram using the 
traditional estimator [de Marsily, 1986]. 

1 n(h) 

•/(h) = 2n(h) • [z(x, + h) - z(x,)] 2 
l=l 

(2a) 
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where •/(h) is variogram, h is the lag, n (h) is the number of 
sample pairs separated by h, and z(xi) and z(xi + h) are two 
measured In (K) values measured at xi and xi + h. Through- 
out this study we assumed second-order stationarity, meaning 
that the variogram is a function of h and direction only. 

We followed the common practice in stochastic hydrology of 
using a negative exponential function to model the In (K) 
experimental variograms [Woodbury and Sudicky, 1991; Reh- 
feldt et al., 1992]. 

•/(h) = •/0+(o'•-•/0)( 1-exp I -(h•2+h22+h32•/21 (2b) 

where % is the nugget, tr• is the sill, hi is the lag or separation 
vector, and X i is the correlation length (with i = 1, 2, 3). It 
should be noted that X is only one third of the practical range. 
At a separation of X, •/(h) is only 63% of the sill, while at a 
separation distance of 3 X, the practical range, •/(h) is 95% of 
the sill. It is at distances of more than 3 X that one expects very 
little spatial correlation in. Z. 

To determine the variogram parameter values we followed 
the practice of Rehfeldt et al. [1992] and held the sill equal to 
the variance of the conditioning data while % and X were 
varied to find the least squares difference between the exper- 
imental and model variograms. This simplified the fitting pro- 
cedure and allowed us to use only values in the rising limb of 
the variogram when fitting the model nugget and correlation 
length. The sill is a random variable, and some authors have 
included the sill as a parameter in the least squares fit [Hoek- 
sema and Kitanidis, 1985; Woodbury and Sudicky, 1991]. We 
determined the sill by finding the variance of the declustered 
data (which is equal to an average of the experimental vario- 
gram values for large lags). Model variograms were con- 
structed for the complete (100%) data as well as for all subsets 
of the conditioning data. The nugget, sill, and correlation 
length values changed as different sets of conditioning data 
were used. Details on the fitted models are given in the Results 
section. 

Fitting a variogram model is unavoidably a subjective exer- 
cise [Woodbury and Sudicky, 1991]. The processes of selecting 
a model, choosing lag increments, and deciding on variations 
of the least squares fit all depend on visual interpretation and 
intuition. 

Geostatistical Simulation Methods 

We compare two methods for estimating mean values of a 
random variable with two methods for generating stochastic 
realizations of a random variable. The first of the estimation 

methods was the simpler. The mean of the conditioning data 
was used as the In (K) estimate for every cell that did not have 
a measured value. The other estimation method, ordinary krig- 
ing, and the two stochastic methods, sequential Gaussian sim- 
ulation and simulated annealing, are all based on an assump- 
tion of second-order stationarity and rely on the variogram for 
inference of spatial correlation. Ordinary kriging is designed to 
produce estimates with low estimation errors, whereas the 
simulation methods, sequential Gaussian simulation and sim- 
ulated annealing, intentionally introduce greater estimation 
error to allow multiple realizations. Alternate hydraulic con- 
ductivity realizations created by stochastic simulation are gen- 
erally input to multiple groundwater simulations [e.g., Poeter 
and Townsend, 1994] to gauge uncertainty in contaminant 
transport. An extensive comparison of estimation and stochas- 
tic simulation methods is given by Deutsch and Journel [1992]. 

In selecting ordinary kriging, simulated annealing, and se- 
quential Gaussian simulation for analysis we chose methods 
that can produce three-dimensional anisotropic fields, honor 
conditioning data, use the variogram as a basis for controlling 
spatial correlation, and have been successfully demonstrated 
and made available by previous investigations. There are many 
other methods that we could have analyzed and that deserve 
more attention than can be given here. These other methods 
include indicator kriging [Johnson and Dreiss, 1989; Suro-Perez 
and Journel, 1991] and Bayesian updating [Woodbury, 1989] as 
well as whole classes of methods that recreate fractal or mul- 

tiscale structures [Brannan and Haselow, 1993; Molz and Bo- 
man, 1993], arrange sediment bodies of a prescribed shape 
[Haldorsen and Damsleth, 1990], or simulate sediment deposi- 
tion [Anderson, 1989; Webb, 1994]. 

The conditional mean as a global estimate. Using the 
mean of the conditioning data as an estimate at all grid cells is 
a common practice in groundwater modeling when few mea- 
surements are available or when a full geostatistical analysis is 
not practicable. We refer to use of the conditional mean for a 
global estimate as the CM method. 

Ordinary kriging. Ordinary kriging is the most widely used 
geostatistical estimation method and is often used to create 
hydraulic conductivity fields for input to groundwater flow and 
contaminant transport models. The kriging equations give not 
just an estimate of Z, they also calculate the model estimation 
error variance for each location, a theoretical uncertainty that 
does not necessarily reflect true estimation error. Ordinary 
kriging estimates are unbiased for the model random variable 
(•) and minimize the model estimation error variance (&•). 
However, because the model random variable is not the same 
as the true variable, the true mean (/Xz) is not necessarily 
reproduced and the true estimation error (try) is not neces- 
sarily minimized. A thorough discussion of ordinary kriging 
with detailed examples is given by Isaaks and Srivastava [1989]. 

Sequential Gaussian simulation. Sequential Gaussian sim- 
ulation creates realizations of normal random variables. As- 

suming that Z is Gaussian, the kriging mean and variance can 
fully describe the distribution of Z at each point in space. The 
sequential Gaussian simulation method introduces estimation 
error to kriging, so that each realization created is different. 
Rather than using the kriged value at each point, a value is 
drawn from the normal distribution defined by the kriging 
mean and variance. In addition, previously simulated points 
are allowed to condition each new point that is simulated. The 
order in which nodes are considered is varied to further ran- 

domize the results. Before applying sequential Gaussian sim- 
ulation, we normalized each conditioning data subset for In 
(K) simulation using a Geostatistical Software Library 
(GSLIB) routine [Deutsch and Journel, 1992]. Variograms for 
the normalized In (K) subsets were also constructed and fit 
with exponential models following the procedures described 
earlier. To regain In (K) estimates, the normal simulated val- 
ues were back-transformed as each realization was completed. 

Simulated annealing. Simulated annealing is an optimiza- 
tion method first developed by Metropolis et al. [1953] and 
subsequently used in the field of image analysis [Geman and 
Geman, 1984]. As applied to random spatial variables [Deutsch 
and Journel, 1992], it is used as a stochastic simulation method 
for generating two- or three-dimensional fields of correlated 
values. An initial field is generated by randomly drawing values 
from a specified distribution; we used the nonparameterized In 
(K) distribution defined by the conditioning data and added 
upper and lower tails to limits of -5.0 and 0.0. One randomly 
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drawn value is assigned to each simulation node, and measured 
values are assigned at measurement locations. Pairs of non- 
conditional values are then switched according to an optimi- 
zation function that describes the least squares error between 
the model variogram and the calculated variogram of the sim- 
ulated field. A temperature function controls how fast the 
optimization function is reduced by allowing some switches 
that increase the optimization function. See Deutsch and Jour- 
nel [1992] for further detail. 

Assessment of the Conductivity Realizations 

We gauged the accuracy of each realization by calculating In 
(K) estimation error at the 272 measurement locations not 
used for conditioning data 

r, = In (R,) - In (K,) (3) 

where t' i is estimation error at measurement location i, ff•i is 
the estimated hydraulic conductivity, and Ki is measured hy- 
draulic conductivity. Mean estimation error, mean absolute 
estimation error, and estimation error variance were calculated 
as follows: 

1 n N 
Idbr--'•-• • • rij 

/=1 i=1 

(4) 

1 n N 
•[LIr I --' •-• • • Iri•l 

j=l i=1 

(5) 

2 1 n •v 
O'r-'-•-• • Z (t'ij- •[Lr) 2 (6) 

j=l i=1 

where •[L r is mean estimation error, /'•lrl is mean absolute esti- 
2 is estimation error variance, n is number of mation error, O' r 

realizations, and N is number of points at which statistics are 
calculated (= 272). 

We used mean absolute estimation error rather than esti- 

mation error variance to express the magnitude of error be- 
cause mean error was generally not equal to zero. For the 
idealized case of a normally distributed random variable and 
mean error of 0 the following relation holds: 

/air I -' 0.675 X/-•F 2 (7) 
If •[L r --' 0, then 

2 O'•n (r) O' r -- (8) 

Using the variance of the Cape Cod declustered In (K) data 
(= 0.28) with equations (7) and (8), one arrives at a value of 
0.35 for mean absolute error. The 0.35 value provided a ref- 
erence against which we compared /'•lrl values from the simu- 
lation results. If In (K) were normal and the mean error were 
zero, then the mean absolute estimation error with the CM 
method would be 0.35. 

To check that mean absolute In (K) error is an accurate and 
unbiased measure of estimation error, we also calculated me- 
dian absolute In (K) error and mean absolute hydraulic con- 
ductivity error for each simulation method. Because the results 
for median absolute In (K) error and mean absolute hydraulic 
conductivity error were similar to results for mean absolute In 
(K) error, we do not devote much attention to these alternate 
measures. A brief discussion of results for the different mea- 

sures is given in the Results section. 

The error statistics were recalculated as each new stochastic 

realization was produced. When additional realizations did not 
change any of the statistics by more than 0.1%, the simulations 
were stopped. It typically required 50-400 sequential Gaussian 
simulation realizations and 25-100 simulated annealing real- 
izations to meet this convergence criterion. 

Transport modeling is strongly influenced by the continuity 
of large-scale hydraulic conductivity structures because contin- 
uous high-hydraulic-conductivity sediments provide preferen- 
tial flow paths that can dominate patterns of flow. We used 
visual comparison of In (K) images to gauge the reproduction 
of continuity patterns. Other investigators [Smith and Schwartz, 
1981; Boman et al., 1995] have used the results of transport 
simulations or have devised measures of spatial continuity 
[Fogg, 1986] to gauge reproduction of In (K) spatial continuity. 
However, at the Cape Cod site, tracer tests were not per- 
formed in the same area as flowmeter testing, so that there are 
no ground truth transport data that can be used in conjunction 
with the conductivity data. Also, the flowmeter data are too 
widely spaced to apply continuity measures. In addition, there 
is some question about using flow simulations to gauge accu- 
racy of geostatistical simulations because dissimilar large-scale 
hydraulic conductivity patterns can produce similar flow char- 
acteristics. For example, contaminant travel times can be equal 
for a homogeneous, high-mean-hydraulic-conductivity, aquifer 
and for a low-mean-hydrauliC-conductivity aquifer with a single 
high hydraulic conductivity inclusion, even though large-scale 
hydraulic conductivity patterns in the two aquifers are quite 
different. The ideal situation for evaluating the ability of 
geostatistical methods to simulated hydraulic conductivity 
would be to have both tracer test results and extensive hydrau- 
lic conductivity measurements from the same test site. 

Ordinary kriging, sequential Gaussian simulation, and sim- 
ulated annealing are all sensitive to the many parameters con- 
trolling their simulations. For instance, when the In (K) dis- 
tribution from which initial simulated annealing values were 
drawn was given an upper tail extending to In (K) = 5.0 rather 
than to 0.0, the error variance increased by 30%. We did not 
tailor the geostatistical methods toward reproducing any par- 
ticular aspect of the In (K) measurements. The simulations 
were also not repeated numerous times for any one method 
with different parameter specifications (other than the ones 
discussed) because the goal of this study was to compare the 
methods under similar average conditions rather than to 
achieve lowest possible estimation errors. 

Results 

Normality and Spatial Trends in Hydraulic Conductivity 

The natural log of the hydraulic conductivity measurements 
was taken to obtain a less skewed distribution (Figure 2). Mean 
In (K) for the complete data set is relatively high at -2.18, and 
the variance of In (K) is low at 0.24. As a comparison, the In 
(K) measurements from the heterogeneous alluvial aquifer at 
the MADE site showed a mean of -5.2 and variance of 4.5 

[Rehfeldt et el., 1991]. Hydraulic conductivity statistics from 
other field sites are summarized by Gelher [1993, p. 292]. All 
geostatistical simulations in this study were performed using In 
(K) rather than K values. Although the In (K) distribution is 
less skewed than the hydraulic conductivity distribution, it still 
has a negative skewness of -0.62. The In (K) distribution for 
the complete set is nonnormal, failing a )(2 test for normality at 
the 99% level. Hess et el. [1992] chose subsets of In (K) data by 
discarding closely spaced data and reported that they passed a 
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Figure 2. Distribution of Cape Cod measured In (K)' binned frequency distribution of In (K) using all 668 
flowmeter measurements. 

)(2 test for normality at the 95 % level. However, given the close 
spacing of the wells, it is difficult to create uncorrelated subsets 
that are statistically significant representations of the site. This 
point is discussed further below. 

Before applying geostatistical methods it is important to 
determine and remove any large-scale trends in the variable to 
be estimated (Z). Large-scale trends in either the mean or 
covariance of Z can cause errors in the estimations. For ex- 

ample, the presence of large-scale trends usually causes vari- 
ance of the original data to be higher than variance of de- 
trended data. 

The Cape Cod In (K) data show no trends in the horizontal 
direction that are consistent at all depths. There are mild 
trends in the vertical direction as seen in Figure 3, which shows 
mean In (K) averaged over all 16 wells. Both the complete data 
and the reduced data show regions of higher conductivity near 
elevations of 7.5 and 12.5 m. The vertical trends are mild, 
having approximately the same magnitude as the random fluc- 
tuations in In (K) seen at all depths. 

Eleven of the sixteen wells fall nearly on line AB of Figure 

1. A vertical section of the measured In (K) from these wells is 
shown in Figure 4. The most obvious trends in Figure 4 are the 
somewhat continuous horizontal bands of higher hydraulic 
conductivity at elevations of 7.5 and 12.5 m. 

Characteristics of the In (K) Subsets 

The vertical trends in In (K) seen in the complete data are 
also seen in the subsets of the complete data (see Figure 3). 
Subsets having more data generally do a better job of repro- 
ducing the trends. The reproduction of the high In (K) vertical 
trends at elevations of 7.5 and 12.5 m can be seen in Figure 3 
for the 20% subset. 

The mean and variance of the subsets as well as the best fit 

variogram parameters are given in Table 1. The subsets have In 
(K) variance as much as 11% lower and 25% higher than In 
(K) variance of the complete data. Subsets with less data 
generally exhibit greater differences in In (K) variance as 
would be expected. Best fit variogram parameters for the data 
subsets deviate from best fit variogram parameters for the 
complete data. The best fit nugget, vertical correlation length, 

7 

4 

-3.0 

100 % data 

O 20 % data 

-2.5 -2.0 -1.5 

Average In(K) at 16 Wells 

-1.0 

Figure 3. Average In (K) with depth. The solid line is average In (K) for all flowmeter data (K is in 
centimeters per second). Dots indicate average In (K) for a reduced data set constructed by randomly 
selecting 20% of the total data. 
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Figure 4. Vertical section of measured In (K) (K is in cen- 
timeters per second). Each rectangular block represents one 
simulation grid cell along section AB. The cells are 0.15 m high 
and 1.0 m long. The vertical black lines are reflections of wells 
on AB. 

and horizontal correlation length all tend to be smaller for the 
subsets than for the complete data. 

While large-scale spatial trends can prevent effective use of 
geostatistical methods, the trends present at Cape Cod are of 
too small a spatial scale and too small a magnitude to have 
more than a minor influence on the In (K) simulations. For 
example, we performed a test case comparing two simulations 
to see if the observed In (K) trends significantly affected In (K) 
estimation. One simulation removed trends in measured data; 
the other did not. For the detrended simulation a third-order 

least squares regression on In (K) was performed with x, y, 
and z coordinates as the independent variables. The detrend- 
ing removed all visible trends in In (K) and reduced In (K) 
variance from 0.24 to 0.19 (K in centimeters per second). 
Twenty percent of the In (K) measurements were used for 
conditioning. It was found that detrending In (K) did little to 
reduce In (K) estimation error and in some cases actually 
increased it slightly. This was true for kriging as well as for 
sequential Gaussian simulation and simulated annealing. This 
test suggests that removing trends is not necessary for 
geostatistical simulation of the Cape Cod hydraulic conductiv- 
ity field. In the subsequent work detailed below, we used In (K) 
conditioning data that were not detrended. 

Spatial Correlation and Variogram Models 

Experimental variograms constructed in several directions 
for the complete In (K) data indicate that the variogram is 
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Figure 5. Variograms for the complete In (K) data. Squares 
are experimental variogram points; solid lines are best fit ex- 
ponential models. (a) Vertical variogram. Model parameters 
are sill = 0.276, nugget = 0.13, and A = 0.69 m. (b) Horizontal 
variogram. Model parameters are sill = 0.276, nugget = 0.13, 
and A = 8.08 m. 

isotropic in the horizontal plane but that there is anisotropy 
between the horizontal and vertical directions. This result is in 

agreement with Hess et al. [1992]. Vertical and horizontal ex- 
perimental variograms for the complete In (K) data are shown 
in Figures 5a and 5b. 

To construct points on the experimental variogram, discrete 
separation distances were chosen, and pairs separated by the 
chosen distances, plus or minus 50% of the lag increment, were 
binned together. We selected lag increments of 15 cm in the 
vertical direction and 1 m in the horizontal direction following 
Hess et al. [1992]. These lag increments yield relatively smooth 
variograms, are approximately 15% of the correlation scales, 
and correspond to the approximate minimum vertical and hor- 
izontal separation distance between measurements. When con- 

Table 1. Statistical Description of Subsets of the Complete Data Used to Assess 
Estimation of In (K) Under Limiting Amounts of Data 

Best Fit Exponential Variogram 
Parameters 

Subset of In (K) Correlation Length 
Complete Number 
Data, % of Data Mean Variance Nugget Vertical Horizontal 

100 668 - 2.18 0.28 0.13 0.69 8.08 
60 396 -2.21 0.28 0.05 0.51 4.80 
50 335 -2.19 0.26 0.09 0.45 4.68 
40 267 -2.21 0.26 0.02 0.30 2.43 
30 199 -2.25 0.25 0.08 0.41 7.67 
20 133 -2.27 0.35 0.00 0.53 4.43 
10 66 -2.31 0.30 0.00 0.79 7.92 
5 33 -2.27 0.29 0.14 0.39 3.89 

Statistics are for declustered data. 
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Figure 6. Examples of the generated In (K) fields: (a) mea- 
sured, (b) ordinary kriging, (c) sequential Gaussian simulation, 
and (d) simulated annealing. Each grey scale rectangle repre- 
sents one simulation grid cell (0.15 rn x 1.0 m). Well positions 
are indicated by vertical black lines. 

structing the vertical variograms, only sample pairs from the 
same well were allowed. For the horizontal variograms, sample 
pairs were excluded by a 5 ø dip tolerance and a 1-m vertical 
deviation tolerance. 

An interesting feature of the Cape Cod site is that the 
domain of K measurements is not much larger and perhaps 
smaller than the spatial correlation range of In (K). Figures 5a 
and 5b show that the variogram is still increasing for the ver- 
tical direction at a lag of 3.5 rn and still increasing for the 
horizontal direction at a lag of 12.5 m. The lags of 3.5 and 12.5 
m correspond to 50% of the greatest separation distances 
between measurements, the usual limit to variogram reliability. 
This means that despite the relatively high degree of homoge- 
neity, the Cape Cod domain is still not large enough to allow 
unambiguous determination of In (K) statistics and correlation 
lengths. 

In our analysis we had difficulty assigning a value for the 
variogram sill (or the variance of the conditioning data). As 
was noted above, with maximum well spacing of --•25 m and 
maximum vertical spacing of --•7 m, the magnitude of the Cape 
Cod domain is about the same as or perhaps smaller than the 
practical range of In (K). It is therefore not possible to create 
a data subset containing only uncorrelated measurements that 
are still representative of the complete data. For example, 
when data subsets were selected randomly so that samples had 
minimum separation distances of 3 m vertically and 12 rn 
horizontally (short estimates of the practical range), the sub- 

sets contain an average of less than 5 samples, which is cer- 
tainly not representative of all 668 measurements. Our solution 
to this problem was to accept that the domain of the flowmeter 
measurements was too small for statistical homogeneity and to 
use In (K) variance values from subsets that retain enough 
data to be representative of the complete data but that are only 
partially declustered. The minimum vertical and horizontal 
separation distances used in generating the subsets were 0.6 m 
and 5.0 m. Using these separation distances, 100 subsets of the 
complete data set were randomly generated that contained a 
mean of 37 data points, had an average iLLin (K) of -2.204, and 
an average O•l. (K) -- 0.276. The value of 0.276 determined in 
this fashion is used as the sill value for the complete In (K) 
variograms. The 0.276 value obtained after partial declustering 
is slightly larger than the 0.24 value for the complete nonde- 
clustered data (which is the value of the variogram sill used by 
Hess et al. [1992]). 

We used a nugget parameter in all variogram models be- 
cause it significantly improved the least squares fit to the ex- 
perimental variograms. Our nugget value of 0.13 for the com- 
plete In (K) data is the same as that used by Hess et al. [1992]. 

The best fit vertical and horizontal correlation lengths based on 
the entire data set were 0.69 m and 8.08 m, giving practical ranges 
of 2.1 m and 24.2 m. Our correlation length values are slightly 
higher than the 0.38 and 8.0 m given by Hess et al. [1992] for the 
same experimental variograms. The evidence that the domain of 
the Cape Cod flowmeter measurements is too small to permit 
stationarity calls into question the estimation of macrodispersivity 
values for this site using the stochastic equations of Gelhar and 
Axness [1983]. We expect that correlation lengths might be even 
larger if more widely spaced measurements were available. 

Comparison of Geostatistical Methods 

Simulated fields of In (K) were generated using conditional 
mean, ordinary kriging, simulated annealing, and sequential 
Gaussian simulation, each with seven different numbers of 
conditioning data (5%, 10%, 20%, 30%, 40%, 50%, and 60% 
of the complete data). Estimation error is generally lower for 
the estimation methods (CM and ordinary kriging) than for the 
stochastic simulation methods (sequential Gaussian simulation 
or simulated annealing), but the stochastic simulations meth- 
ods are better at reproducing observed In (K) structure. None 
of the methods produced In (K) values that had the same 
distribution as the measured data: all methods failed a X 2 test 
at the 99% level when simulated values were compared to 
measured values at the error checking locations. However, the 
stochastic methods did a better job of matching the right hand 
tail of the In (K) distribution that contains the high conduc- 
tivity values. An unexpected result was that mean absolute 
error was not sensitive to the number of conditioning data. 
Mean absolute error decreased by no more than 25% for any 
of the methods when the number of conditioning data was 
increased by a factor of 10. Point In (K) conditioning values 
rather than model variogram parameters were found to have 
primary control over accuracy of the In (K) estimation. Exam- 
ple In (K) fields produced by ordinary kriging, sequential 
Gaussian simulation, and simulated annealing are shown in 
comparison to measured data in Figure 6. Table 2 gives a 
compilation of simulation results. 

Conditional mean as estimate. The CM method is by far 
the easiest to implement because only the conditional mean 
must be calculated. Despite its simplicity, CM provided In (K) 
fields with estimation error lower than sequential Gaussian 
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Table 2. Estimated In (K) Statistics and Associated Error 

Data Used to Simulated In (K) In (K) Estimation Error 
Condition, 

% Average Variance Average Average Absolute Variance 

Conditional Mean as Estimate 
60 - 2.21 0.00 0.07 0.38 0.25 
50 - 2.19 0.00 0.07 0.39 0.25 

40 - 2.21 0.00 0.08 0.39 0.25 
30 - 2.25 0.00 0.07 0.39 0.25 
20 -2.27 0.00 0.12 0.40 0.26 
10 -2.31 0.00 0.17 0.41 0.27 

5 - 2.27 0.00 0.16 0.41 0.27 

Kriging 
60 -2.22 0.09 0.07 0.34 0.20 

50 -2.21 0.08 0.07 0.33 0.19 
40 -2.23 0.10 0.08 0.34 0.21 
30 -2.20 0.06 0.06 0.34 0.20 
20 -2.27 0.11 0.13 0.38 0.24 
10 -2.26 0.11 0.11 0.40 0.26 
5 -2.32 0.05 0.17 0.41 0.24 

Sequential Gaussian Simulation 
60 -2.21 0.23 0.06 0.47 0.38 
50 -2.21 0.26 0.07 0.49 0.42 
40 -2.21 0.25 0.07 0.47 0.40 
30 - 2.20 0.30 0.06 0.51 0.48 
20 -2.26 0.23 0.06 0.46 0.36 
10 -2.24 0.34 0.09 0.50 0.50 

5 -2.24 0.53 0.09 0.58 0.73 

Simulated Annealing 
60 -2.21 0.15 0.06 0.40 0.28 
50 -2.19 0.20 0.05 0.44 0.33 

40 -2.21 0.22 0.07 0.45 0.34 
30 -2.17 0.18 0.03 0.43 0.31 
20 -2.25 0.22 0.10 0.45 0.34 
10 -2.24 0.20 0.10 0.45 0.35 

5 -2.27 0.39 0.13 0.60 0.62 

Geostatistical simulation results are shown for four methods using various numbers of conditioning data. 

simulation and simulated annealing and only 0-16% higher 
than ordinary kriging. The magnitude of mean absolute error 
for each method is shown in Figure 7. With all seven numbers 
of conditioning data, mean absolute error for CM was about 
0.4, slightly higher than the value of 0.35 derived for the case 

of normally distributed In (K) and zero mean error. This de- 
viation was expected, as was noted above, because the Cape 
Cod In (K) data are not normally distributed and mean esti- 
mation error ranges from 0.07 to 0.17 as the number of con- 
ditioning data decreases. 
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Figure 7. Mean absolute estimation error for the In (K) simulations as a function of percentage of condi- 
tioning data (K is in centimeters per second). 
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Figure 8. Distributions of measured and simulated In (K). Data are from 272 measurement locations (K is 
in centimeters per second). Simulations used 20% of total data for conditioning. 

The CM estimation error variance values were of approxi- 
mately the same magnitude as measured In (K) variance. The 
small differences are due to differences between mean In (K) 
of the 100% data and mean In (K) of the data subsets. There 
is no spatial variation or patterning in the CM realizations 
because every cell has the same estimated In (K). The variance 
of the estimated In (K) values was zero for the same reason. 

Ordinary kriging. Ordinary kriging had the lowest estima- 
tion error of all methods, as one might expect from consider- 
ation of the kriging equations. However, considering the extra 
time and effort required for ordinary kriging as compared to 
CM, the difference in mean absolute error is small, only 16% 
at most. Because ordinary kriging take a moving average 
whereas CM takes a global average, the relative benefit of 
using ordinary kriging rather than CM would be greater if 
there were stronger trends in the hydraulic conductivity field. 

The distributions of In (K) values estimated by ordinary 
kriging for the error-checking locations differ significantly from 
the measured In (K) distribution for the same locations. The In 
(K) distributions produced by ordinary kriging were generally 
more peaked than the measured distribution (Figures 8 and 9), 

and variance of the estimated In (K) values was consistently 
less than 40% of the measured variance. The kriged estimates 
generally failed to reproduce high In (K) measurements. These 
high end values can be expected to significantly control 
groundwater movement, and their absence in the kriged esti- 
mates is likely a major shortcoming in the application of this 
method for transport models. 

Reproduction of hydraulic conductivity structure by ordi- 
nary kriging was poor. It is a recognized problem that kriging 
produces fields that are smoothed and do not capture the 
discontinuities or sharp spatial changes of the true field [Isaaks 
and Srivastava, 1989]. This problem is especially pertinent to 
groundwater simulation because high and low K continuity 
patterns often control aquifer transport [Fogg, 1986]. The 
smoothness of the kriging fields can be seen in Figures 6 and 
10. The local contrasts present in the measured In (K) image 
were not reproduced by kriging. Large-scale patterns in In (K), 
such as the low In (K) structure around wells 9, 10, and 11 at 
elevations of 8-12 m, are visible but overly smoothed. The 
smoothing was more pronounced when fewer conditioning 
data were used. 
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Figure 9. Detail of the high end portion of the distribution shown in Figure 8. Data are from 272 measure- 
ment locations (K is in centimeters per second). Simulations used 20% of total data for conditioning. 
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Figure 10. Examples of In (K) fields produced by ordinary 
kriging using conditioning with (a) 50%, (b) 20%, (c) 10%, and 
(d) 5% of total data. Well positions are indicated by vertical 
black lines. 
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Figure 11. Examples of In (K) fields produced by sequential 
Gaussian simulation using conditioning with (a) 50%, (b) 20%, 
(c) 10%, and (d) 5% of total data. Well positions are indicated 
by vertical black lines. 

Sequential Gaussian simulation and simulated annealing. 
As might be expected, sequential Gaussian simulation and 
simulated annealing both had higher estimation error but bet- 
ter reproduction of hydraulic conductivity structure than CM 
or ordinary kriging. Mean absolute error was about 30% 
higher for sequential Gaussian simulation and simulated an- 
nealing than for CM and ordinary kriging. Sequential Gaussian 
simulation and simulated annealing are more sensitive to the 
number of conditioning data than are CM and ordinary krig- 
ing, especially when small amounts of data are used. 

Sequential Gaussian simulation and simulated annealing did 
a good job of reproducing both the extreme measured In (K) 
values and the overall In (K) distribution. In Figures 8 and 9 it 
can be seen that both the upper and lower tails of the distri- 
bution were well reproduced. The reproduction of extreme In 
(K) values was also reflected in the In (K) variance of the 
simulated values being close to the measured In (K) variance. 

Simulated annealing had slightly lower estimation error than 
sequential Gaussian simulation and produced In (K) continu- 
ity patterns with somewhat less local contrast in In (K). The 
slightly smoother simulated annealing realizations are shown 
in comparison to sequential Gaussian simulation realizations 
in Figures 11 and 12. The large-scale and small-scale continuity 
patterns produced by Gaussian simulation and simulated an- 
nealing were visually similar to those seen in the measured 
data. The high In (K) structures at elevations of 7.5 and 12.5 m 
are reproduced by sequential Gaussian simulation and simu- 
lated annealing except when number of the conditioning data 

falls below 10%. The sequential Gaussian simulation realiza- 
tions were not as smooth as the simulated annealing realiza- 
tions because sequential Gaussian simulation introduces error 
to the point value after taking account of neighboring values 
through the kriging process, whereas simulated annealing in- 
troduces error only by its initial random selection of values 
from a distribution. 

Spatial patterns of error. The three variogram-based 
methods, ordinary kriging, sequential Gaussian simulation, 
and simulated annealing, had very similar spatial patterns of 
estimation error. Figure 13 shows mean absolute error at the 
272 error-checking locations for realizations conditioned by 
the 20% subset. Error was generally highest in those areas 
having high local In (K) contrast. For instance, Figure 13 
shows that well 4 has generally low estimation error at the top 
and the bottom but high error at elevations of 8-12 m where 
high K values were immediately adjacent to low K values. The 
high estimation errors in areas of high local contrast were due 
to the assumptions of the geostatistical methods that both the 
random variable and the variogram are smoothly varying con- 
tinuous functions. 

Effects of More Conditioning Data on Estimation Error 

Very little decrease in mean absolute estimation error was 
seen for any of the methods as the number of conditioning data 
was increased (Figure 7). The only substantial decrease in 
mean absolute estimation error was for sequential Gaussian 
simulation and simulated annealing as the amount of condi- 
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Figure 12. Examples of In (K) fields produced by simulated 
annealing using conditioning with (a) 50%, (b) 20%, (c) 10%, 
and (d) 5% of total data. Well positions are indicated by 
vertical black lines. 

tioning data was increased from 5% to 10%, where mean 
absolute estimation error dropped by 14% for sequential 
Gaussian simulation and by 25% for simulated annealing. 
When the number of conditioning data was further increased 
to 60%, the additional decrease in mean absolute estimation 
error was only 7% for sequential Gaussian simulation and only 
12% for CM. A threshold controlling the estimation accuracy 
of sequential Gaussian simulation and simulated annealing 
apparently exists between 5% and 10% of conditioning data. 
Below this threshold the realizations produced by sequential 
Gaussian simulation and simulated annealing can be improved 
by increasing the number of conditioning data. Above the 
threshold it takes a large number of additional conditioning 
data to reduce mean absolute estimation error. A similar 

threshold may exist for ordinary kriging, but it apparently is 
below 5% of the conditioning data. 

When median absolute estimation error rather than mean 

absolute estimation error was used as the basis for comparing 
methods, the same threshold occurred. The only change to 
Figure 7 caused by substituting median absolute estimation 
error was a reduction of all values by about 25%. The relative 
position of the four curves and the relative changes with in- 
creasing amounts of conditioning data remained the same. 

Because simulated In (K) values would be transformed to K 
valueõ before being used as input to a groundwater flow model, 
it is of interest to see how K estimation error behaves. To 

investigate this, we ran simulations with the same input param- 
eters as before but transformed all In (K) values to K values 
before calculating estimation error. The results showed the 
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Figure 13. Spatial distribution of absolute estimation error 
with 20% of the total data used for conditioning: (a) condi- 
tional mean, (b) ordinary kriging, (c) sequential Gaussian sim- 
ulation, and (d) simulated annealing. For ordinary kriging and 
CM, absolute error at each location is from a single In (K) field. 
For sequential Gaussian simulation, mean absolute error is from 
144 realizations, and for simulated annealing, mean from 39 re- 
alizations. Well positions are indicated by vertical black lines. 

same error threshold between 5% and 10% of the conditioning 
data, and all four methods kept the same relative positions as 
in Figure 7. The In (K) to K transformation expands the 
right-hand tail of the distribution, so errors associated with 
large K values were much larger than errors associated with 
smaller K values. Because the stochastic methods are designed 
to occasionally select an abnormally high value, the mean ab- 
solute K error for the stochastic methods was larger and more 
variable relative to the estimation methods than it was with 

mean absolute In (K) error. This increase in error was partic- 
ularly large for sequential Gaussian simulation, which tends to 
occasionally produce extremely high values due to the large 
error it introduces. 

The threshold number of conditioning data most likely de- 
pends on a number of factors including spatial correlation, 
large-scale spatial trends, the magnitude of In (K) variation, 
and the spatial scale of the hydraulic conductivity measure- 
ments. To normalize for spatial relation in In (K), the number 
of In (K) measurements per integral volume can be used. 
Taking In (K) correlation lengths in x, y, z of 8.08 m, 8.08 m, 
and 0.69 m, and taking the domain of the Cape Cod K mea- 
surements to be (4.5 m x 25 m x 7.05 m), there are approx- 
imately 18 integral volumes in the domain. The threshold num- 
ber of conditioning data thus corresponds to about three data 
per integral volume. 
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Figure 14. Effects of model variogram on mean absolute error. Solid lines represent geostatistical simula- 
tions using variograms constructed for data subsets. Dotted lines represent geostatistical simulations using 
variograms for complete data. 

Effects of Variogram Model on Estimation Error 

The In (K) fields produced by ordinary kriging, sequential 
Gaussian simulation, and simulated annealing are conditioned 
in two ways: by the conditioning point In (K) values and by the 
model variogram. We ran a simple test case to gauge the 
relative importance of point measurements and model vario- 
gram parameters in reducing estimation error. We retained the 
same conditioning point data subsets used in our previously 
discussed realizations but changed the model variogram pa- 
rameters. In each case we assigned the best fit variogram pa- 
rameters for the complete (100%) data set. The expectation 
was that estimation error would decrease because the 100% 

best fit parameters give the most complete description of In 
(K) spatial correlation. We did not perform the test case for 
sequential Gaussian simulation because the best fit variogram 
parameters for the 100% data can be used only with the 100% 
simulations due to the normalization procedures. 

Figure 14 shows results of changing the variogram parame- 
ters. Surprisingly, using variogram parameters for the 100% 
data actually increases estimation error for simulated anneal- 
ing and makes almost no change for ordinary kriging. Even for 
the 20% subset, which has best fit variogram parameters the 
most different from the complete (100%) data, mean absolute 
estimation error is not decreased by using the 100% variogram 
parameters. This indicates that point In (K) values, not vario- 
gram parameters, are the strongest controls on the accuracy of 
the realizations. 

Conclusions 

This study examined several commonly used geostatistical 
methods for accuracy of point In (K) estimates and assessed 
their reproduction of hydraulic conductivity patterns. Exten- 
sive hydraulic conductivity measurements from the Cape Cod 
sand and gravel aquifer gave us a unique opportunity to eval- 
uate the ability to infer hydraulic conductivity structure in the 
presence of limiting data. 

The results demonstrate how each of the geostatistical meth- 
ods reproduces naturally occurring patterns of K and how 
simulations are affected by the number of K measurements. 
None of the methods did a very good job of predicting point In 

(K) values. Ordinary kriging had the lowest In (K) estimation 
errors but still had In (K) estimation error variances that were 
about 75% of the measured In (K) variance. The two estima- 
tion methods, conditional mean as estimate and ordinary krig- 
ing, had slightly smaller estimation errors than the stochastic 
simulation methods. The stochastic simulation methods, se- 
quential Gaussian simulation and simulated annealing, pro- 
vided the following advantages: multiple realizations, simu- 
lated In (K) distributions close to measured In (K) 
distributions, and good reproduction of both local In (K) con- 
trast and large-scale In (K) patterns. The inability of kriging to 
reproduce high In (K) values, as reaffirmed by this study, 
provides a strong motivation to choose stochastic simulation 
methods over estimation methods for use with contaminant 

transport models. This is especially true when performing fine- 
scale deterministic simulations of contaminant transport to 
estimate macrodispersion [Scheibe and Cole, 1994; Davis, 
1986]. Ordinary kriging produced In (K) fields with about 75% 
less variation than was seen in the measured data and failed to 

reproduce measured high In (K) values, which are generally 
understood to control aquifer transport. Sequential Gaussian 
simulation and simulated annealing did a much better job of 
reproducing the extreme In (K) values. 

It was found that all the methods were relatively insensitive 
to the number of conditioning data and to model variogram 
parameters. This indicates that the effort of obtaining high- 
density K measurements provides relatively little improvement 
in the geostatistical estimates of In (K) at Cape Cod. Estima- 
tion error for simulated annealing and sequential Gaussian 
simulation appeared to pass a threshold value as the number of 
conditioning data was increased from 5% to 10% of the com- 
plete data. When more than 10% of the data were used to 
condition the simulated annealing and sequential Gaussian 
simulation simulations, almost no decrease was seen in esti- 

mation error. In this aquifer the 10% data level is apparently a 
threshold, above which prediction of measured In (K) im- 
proves very slowly. This threshold corresponds to approxi- 
mately three conductivity measurements per integral volume. 
A threshold was not observed for ordinary kriging, probably 
because it occurs at less than 1.5 measurements per integral 
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volume, the smallest number of conditioning data considered 
here. 

The results of this study were strongly affected by the char- 
acteristics of the Cape Cod aquifer. The absence of strong 
heterogeneity and spatial trends in hydraulic conductivity at 
Cape Cod may explain why additional conditioning data did 
little to improve the simulations. The measurement error as- 
sociated with the hydraulic conductivity data and the relatively 
large aquifer volume described by the flowmeter measure- 
ments (a 7-m radius around the well) as compared to the size 
of the test site (5 m x 25 m) probably also contribute to the 
redundancy of the additional data. Apparently, additional data 
did little to reveal significant spatial trends in hydraulic con- 
ductivity. 

Although the horizontal and vertical variograms indicate 
that there is some fine-scale structure in hydraulic conductivity, 
geostatistical methods guided by the variograms do not accu- 
rately reproduce this structure. As measured by errors in the 
prediction of hydraulic conductivity, the fine-scale measure- 
ments at this site only provide redundant information on the 
conductivity structure. If the Cape Cod aquifer spatial conduc- 
tivity characteristics are indicative of other sand and gravel 
deposits, then the results on predictive error versus data col- 
lection obtained here have significant practical consequences 
for site characterization. For the Cape Cod aquifer there is 
little benefit to be gained from sampling more than about 50 
randomly spaced conductivity measurements over a domain of 
5 m x 25 m x 7 m. Such a sampling effort, however, is still 
greater than is typical in real-world site characterization. While 
the Cape Cod data set contains redundant information con- 
cerning hydraulic conductivity, real-world site characterization 
has a spatial resolution of hydraulic conductivity data that is 
typically orders of magnitude coarser. Hence in real-world 
settings with sand and gravel aquifers, our results suggest that 
more data collection than is typically performed will likely 
improve understanding of permeability structure. 
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