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Predictions of contaminant transport produced by
computer models are now widely used to evaluate health
risks, determine remediation strategies, and guide
environmental regulatory decisions. But model prediction
errors are not generally well-known or quantified. In this
study, the results of an extensive tracer test at the
Columbus Air Force Base (CAFB), MS, test site are used
to quantify error in computer model predictions of groundwater
contaminant movement in the subsurface. Our modeling
assumes no knowledge of the observed solute transport,
uses widely applied modeling methods to generate computer
predictions, and uses permeability and water levels as
input data. Predicted and observed mass transport differ
significantly, despite the relative abundance of aquifer data.
It is not possible to accurately predict mass transport at
CAFB using our approach because permeability cannot be
characterized at the necessary resolution. Prediction
errors at Superfund sites and other contaminated groundwater
sites may be even higher because data is less abundant.
This suggests that widespread use of predictive mass
transport models that depend strictly on measured
permeability and head values to predict transport should
receive greater scrutiny and that methods of model
parametrization based on early transport behavior should
be more widely applied.

Introduction
Prediction of mass transport in the subsurface is critical to
assessing groundwater contamination hazards. Groundwater
models, which incorporate basic physical and chemical
processes governing mass transport, are commonly used in
conjunction with field and laboratory measurements to make
quantitative predictions of subsurface pollution transport.
For regulatory purposes, predictions are often based on
approximations to the advection dispersion equation (1) or
on simple analytical solutions to the advection-dispersion
equation that assumes homogeneity of hydrologic and
geochemical properties (2).

Computer-based transport predictions are routinely used
as an aid to calculate health risks (3), determine cleanup
strategies (4), guide environmental regulatory policy (5), and
in post-audit studies, to determine culpable parties in lawsuits
(6). Collectively, computer-based predictions of subsurface
mass transport influence legal and policy decisions involving
the allocation of at least 1 billion dollars annually in the
United States alone (7, 8).

Implicit in the use of these models is the assumption that
their predictions possess some reasonable degree of accuracy

and that the error bounds on the predictions are meaningful.
However, given the inherent heterogeneity of the subsurface,
the accuracy of these models is very site specific and is
unknown a priori. Despite the heavy use of these models in
decision making, few post-audits of their value appear in the
literature, and these find significant differences between
predicted and observed mass transport (9-11).

In this study, through the use of one of the most well-
studied cases of subsurface mass transport in the world, we
explore limitations in the prediction of mass transport in the
subsurface and question the validity of decision making based
upon transport predictions produced by commonly applied
groundwater modeling methods.

Test Site Conditions and Behavior
We use results from an aquifer test site at Columbus Air
Force Base (CAFB), MS (Figure 1). The CAFB aquifer lies 2-3
m below land surface and consists of unconsolidated sand
and gravel 10-12 m thick of fluvial origin. In 1986, a bromide
tracer plume was injected and then monitored for 1.5 yr
while it moved with natural groundwater flow (12). Figure
2 shows observed depth-maximum bromide concentrations.
The study provided an unprecedented detailed examination
of subsurface mass transport and its controls. Measurements
at the site, 24 ha in area, include 2451 tests of permeability,
water level measurements in 78 wells, 38 test holes for
sediment analysis, and detailed geophysical testing (13-15).
The 1986 tracer test involved collecting 11 126 groundwater
samples from 225 multi-level wells and analyzing bromide,
tritium, and flouric acid concentrations. Subsequent tracer
tests studied hydrocarbon transport (16).

It has been argued that spatial variability in permeability
at this site is unusually large (12), and if so, the generality of
the results obtained from this site would be limited. The
results summarized in Table 1 indicate that permeability
variation at the CAFB site (ln (K) variance ) 4.4) is in the
upper range of 20 North American aquifers considered. Given
that field-based research of subsurface mass transport is, for
ease of testing and interpretation of results, biased toward
field sites with relatively homogeneous permeability structure
(17-19), comparison of values in Table 1 likely overestimates
the variability of the Columbus aquifer relative to other
aquifers. We estimate that the results of this study are directly
applicable to 10-20% of aquifers in North America.
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FIGURE 1. Location map of Columbus Air Force Base.
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Mass transport of bromide in this aquifer did not follow
a Gaussian pattern as might be expected from common
solutions to the advection-dispersion equations (20) but
instead was patchy in character with the plume’s leading

edge moving 10-20 times faster than the center of mass
(Figure 1). The field test of bromide movement, while carefully
performed, encountered complications typical of field work.
Water levels and head gradients fluctuated significantly
during the bromide tracer test (Figure 3); the saturated
thickness of the aquifer varied by up to 40%, and the direction
of head gradients shifted by up to 40° (12).

Predicting Subsurface Mass Transport
Prior Studies. Previous transport models of the CAFB site
have used observed plume behavior to constrain predictions.
Adams and Gelhar (13) prescribe a steady diverging flow
field and dispersion parameters to recreate spatial moments
of the bromide plume. Others have made hindcasts of mass
transport by assuming that the aquifer contains two domains
of contrasting permeability (21). Harvey and Gorelick (22)
use a rate-limited mass transfer that model that assumes the
aquifer has low permeability material with mostly diffusive
transport and high permeability material with mostly ad-
vective transport. The model provides a good explanation of
the declining mass recoveries and plume migration but
requires the assignment of three mass-transfer parameters
and assumes that flow velocities are completely known. Zheng
and Jiao (23) use a steady-state flow field and two dispersivity
values to recreate the tritium tracer plume. They had
difficulties in fitting observed transport behavior, which they
attributed to inadequate characterization of permeability.
The four prior studies above all use observed plume behavior
to calibrate their models and therefore are not “predicting”
solute transport as we attempt to do in this study. A prior
modeling study by Eggleston and Rojstaczer (24) found large-
scale spatial permeability trends did not have primary control
over transport behavior at the CAFB site. The study presented
here differs from the 1998 study in that it focuses on
groundwater model prediction accuracy rather than the effect
of large-scale trends, uses a transient model rather than a
steady-state model, and includes permeability variation at
scales <10m in the model.

FIGURE 2. Measured depth-maximum bromide concentrations after
503 days of transport. Warmer colors indicate higher [Br]. Note
non-Gaussian plume behavior. Depth-averaged permeability in gray;
darker shading indicates lower permeability. Curved solid line is
the 1 ppm [Br] contour. Black circles are locations of permeability
measurement wells.

TABLE 1. Variability in Aquifer Permeabilitya

hydraulic
conductivity (K)

site and reference

no.
of meas-
urements

variance
of ln (K)

1 Glatt Valley, Switzerland (38) 18 1.43
2 Chalk River Nuclear Laboratories (39) 18 0.32
3 Twin Lakes (19) 89 0.07
4 Borden, Ontario (18) 1279 0.38
5 Columbus, MS (14) 2451 4.40
6 Cape Cod, MA (17) 668 0.24
7 Richland, WA (40) 46 3.24
8 Havana, IL (41) 31 0.15
9 Central IL (42) 38 0.25

10 East Central IL, Wedron formation (43) 60 0.99
11 East Central IL, Henery formation (43) 23 1.16
12 East Central IL, Banner formation (43) 71 1.37
13 East Central IL, Glasford formation (43) 118 0.95
14 Northeast AR (44) 19 0.18
15 West NV (45) 64 1.83
16 Colorado River, AZ and CA (46) 30 3.81
17 Corpus Christi, TX (47) 15 4.58
18 Yakima Reservation, WA (48) 35 3.47
19 Castle Valley, UT (49) 15 1.39
20 Kalamazoo, MI (50) 22 0.64

a Permeability variation is indicated by ln (K) variance, where k is the
hydraulic conductivity. Permeability measurement techniques include
well pumping tests and air permeability tests. Sampling scales vary
from 2 to 100 km (updated from ref 37).
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Mass Transport Model. For this study, we constructed a
predictive groundwater model of the CAFB bromide plume.
Groundwater flow was modeled with the software program
MODFLOW (25), and bromide mass transport was modeled
with the software program MT3D (26). Similar forward
predictive models are commonly employed in regulatory
settings. In setting up the model, we only included data that
are commonly collected during a groundwater remediation
project, such as the cleanup of a Superfund site, with the
proviso that we had orders of magnitude more measurements
of the aquifer than a typical site. We did not include any
information that assumed knowledge of the actual plume
behavior.

Model Parameters. The model domain was 96 m × 260
m × 10.5 m (X, Y, Z) with a total of 109 200 grid cells, each
measuring 4 m × 4 m × 0.15 m. Uniform porosity ) 0.35 was
a best estimate from Adams and Gelhar (13). Porosity can be
expected to vary spatially and may exert significant control
over transport variability at the site, but there is not enough
data to accurately assess that variability over the model
domain.

Values for permeability at the many computer grid nodes
without measurements (106 749 out of 109 200) were inter-

polated using four different, commonly used, methods:
homogeneous assignment, dual homogeneous zones, kriging,
and simulated annealing. All four interpolation methods use
the 2451 flowmeter measurements as the basis of generating
interpolated model permeability values. For the homoge-
neous assignment, hydraulic conductivity at all model grid
nodes was set equal to the global geometric mean of 0.0044
(cm/s). For the dual homogeneous zone assignment, two
zones were delineated using grain-size analyses from six
sediment cores and the flowmeter measurements of perme-
ability. The test site aquifer can be roughly described as a
region of predominantly coarse sediments within a region
of predominantly fine sediments (14). Model permeability
values for each grid node were calculated as the geometric
mean of all flowmeter measurements within the surrounding
sediment region (0.042 or 0.00176 cm/s). For assignment by
kriging, ordinary kriging was implemented with a search
radius of 120 m, a maximum of 16 conditioning data values,
and an exponential variogram having a sill of 4.4 m, a
horizontal range of 12.48 m, and a vertical/horizontal range
ratio of 0.116. Figure 4 shows a vertical slice of the kriged
permeability field. For simulated annealing assignment,
hydraulic conductivity values were drawn from the measured

FIGURE 3. Hydraulic gradient magnitude and direction during the test period.

FIGURE 4. Model permeability values, vertical section, kriged values. Lighter shading indicates higher permeability. Bromide was injected
at 0 m and moved to the right with groundwater flow.
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distribution and spatially rearranged to minimize an objective
function E (eq 1):

There are many other methods that could be used to
interpolate permeability values (27). But without looking to
the observed bromide transport, it is impossible to know
a-priori which interpolation methods will give permeability
estimates yielding accurate model results. The four inter-
polation methods used here were chosen to represent
common interpolation approaches (global average and
kriging) and alternate approaches (hydrofacies and stochas-
tic). Hydrogeologic field data other than the flowmeter
measurements could also be used to infer model permeability
values. In exclusively using the flowmeter data, we are
following the conclusions of Rehfeldt et al. (28), who before
the tracer test began examined hydraulic conductivity values
obtained from slug tests, grain-size correlation, surface
geophysics, borehole geophysics, pumping tests, hydrofacies
mapping, laboratory core testing, and flowmeter tests before
concluding that the flowmeter tests provide the most direct
and successful measure of hydraulic conductivity.

Constant heads were assigned on the side boundaries,
and a no-flow boundary was specified on the bottom
corresponding to an observed low permeability marine clay/
sand unit. For each stress period, constant head values along
the boundaries were changed to reflect measured water levels.
Temporal variability in water levels were included in the
model by reassigning the constants heads after 0, 170, 200,
300, and 410 days. Because the available water level data was
extensive and there was little reliable recharge data, we did
not explicitly include recharge in the model. The measured
heads show vertically downward gradients as would be
expected in a shallow surficial aquifer receiving recharge.
The model heads are consistent with this pattern. Initial
bromide concentrations were assigned to approximate field
injection of the bromide solution. No dispersion or diffusion
was included in the model through explicit use of mixing
coefficients. Instead, all mixing resulted from variations in
the flow field.

Subsurface transport predictions are sensitive to initial
conditions if initial errors propagate and magnify over time.
We examined the sensitivity to initial assignment of solute
concentrations by updating the plume to observed bromide
concentrations to remove model error at early times. In each
case, the model plume was allowed to proceed on to the 503
day stopping point and then compared to the observed
plume.

Comparison of Model Predictions. Simulated and ob-
served bromide plumes are compared to examine how model
parameters control prediction errors. Plume profiles are
calculated by determining the proportion of bromide mass
at each grid position in the direction of flow (Z):

where i-k are the X-Z grid coordinates; nx, ny, and nz are
the number of grid nodes in X-Z; Brijk is the mass (mg) of
bromide contained in the i-k grid cell; and mk is the
proportion of bromide mass contained in the plume.

A ø2 statistic indicates how well a simulated plume profile
matches an observed profile:

where nz is the number of model grid nodes in the Z direction,
mk obs is the proportion of bromide mass in the k position in
the observed plume, and mk sim is the proportion of bromide
mass in the k position in the simulated plume. Because ø2

is sensitive to small values of mk obs, Z positions having less
than 1% of the total bromide mass are excluded from the
calculation in eq 3. Smaller values of ø2 indicate better fits
to the observed plume profile and an exact match to the
observed profile yields ø2 ) 0.0.

Results and Discussion
Profiles of predicted and observed plumes are shown in Figure
5. Modeled plumes do not reproduce the dilute front
stretching far ahead of peak concentrations. Low concentra-
tions are predicted to have too small a spread as compared
to the observed plume while high bromide concentrations
have a spread that is much wider than the observed plume.

The base case simulation, which employed 5 time periods,
kriged permeability values, and assignment of bromide
concentrations on day 0, gave a prediction of bromide
transport having ø2 ) 0.98. All other simulations deviate from
the base case in just one aspect; either the number of time
periods, method of permeability assignment, or bromide
concentration updating. ø2 values for all simulations are given
in Table 2.

Predictions of bromide movement are highly dependent
on the interpolation algorithm used to assign permeability
values. The poor predictive performance of assuming a
uniform permeability is expected, yet at most other con-
taminated groundwater sites there is insufficient sampling
to adequately estimate spatial variation of permeability.
Although numerous algorithms for generating realistic
permeability fields exist (29), more work is needed to quantify
the accuracy of their generated fields for different hydro-
geologic settings.

Stochastic approaches for assigning permeability, such
as simulated annealing, offered little benefit in our predictive
modeling efforts. Of the four permeability interpolation
methods used, only simulated annealing allows for stochastic
predictions of mass transport. But with all permeability fields
generated, simulated annealing consistently led to simula-
tions that over-predicted plume velocities by 1-3 orders of
magnitude, apparently because simulated annealing pro-
duced greater fine scale permeability contrasts with enough
spatial continuity to short circuit less permeable regions.

Frequently, in practical use of physical models, updating
is used to reduce predictive error, as for example in predicting
meteor impacts on spacecraft (30) and modeling vehicle
dynamics (31). To test if the poor model predictions were
caused by propagation of error in initial concentration
assignment, we updated model concentrations to the ob-
served concentrations after 49, 126, 202, and 370 days and
then ran the model to the 503 day stopping point. Figure 6
shows the reduction in error from updating bromide
concentrations. Error is, as expected, reduced but differences
between the observed and predicted behavior grow sub-
stantially after each updating, indicating that the error is
coming from a source other than incorrect assignment of
initial bromide concentrations. Because our measurements
of concentration have exceptional spatial resolution, it
appears that error in assignment of initial bromide concen-
trations has little influence on degradation of the predictions.
At contaminated aquifer sites that typically have less data,
spatial resolution of concentration is much poorer and errors
in initial assignment of concentration can be expected to be
significant and propagate over time.

E ) ∑
h

[γ′(h) - γ(h)]2

γ(h)2
(1)

mk ) ∑
i)1

nx

∑
j)1

ny

Brijk (mg)(∑
i)1

nx

∑
j)1

ny

∑
m)1

nz

Brijm (mg))-1 (2)

ø2 ) ∑
k)1

nz (mk obs - mk sim)2

mk obs

(3)
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Although it is outside the scope of this study to do so,
early bromide concentration measurements could be used
to refine model permeability, boundary conditions, or
porosity and to justify the inclusion of other nonadvective
transport processes such as dual porosity diffusion. We do
not use the bromide data in these ways because we want the
model to be strictly predictive (not conditioned to concen-
tration data) and because honoring measured data is a
guiding principle in the construction of predictive ground-
water transport models. Also, there is no pre-tracer-test
evidence that justifies letting secondary data take precedence
over flowmeter measurements in generation of model
permeability values (28). Results of the tracer test and analyses

performed after the tracer test can be used to infer dual
permeability domains (21, 22) or to get an inverse solution
for permeability and improve model results (32, 33). Inverse
methods generally require that some aspects of the measured
data be ignored and introduce considerable subjective
decision-making during parametrization.

Predictive models of mass transport in groundwater most
often infer mass flux from hydraulic head gradients, porosity,
and permeability. Head gradients and porosity vary by several
orders of magnitude less than permeability, hence it is
expected that errors in permeability estimation are the main
source of predictive error in our mass transport simulations.
If permeability were very well characterized so that its

FIGURE 5. (Panels a and b) Measured vs modeled bromide plume profiles after 503 days of transport. Mass distribution along direction
of flow normalized so area under each curve ) 1.0. (a) Effects of permeability interpolation methods (homogeneous, kriging, simulated
annealing). (b) Effects of describing transient heads with increasing detail.
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standard error were comparable to the standard error for
porosity and hydraulic gradient, then porosity and hydraulic
gradient would become relatively important sources of
prediction error.

It has been shown that permeability variations with length
scales less than 1 m affect mass transport at CAFB (22-24).
Effective porosity may also vary at scales less than 1 m,
possibly in correlation with permeability, and affect mass

transport. Conventional field methods for measuring per-
meability (slug tests, pumping tests) average out such fine
scale variations. Permeability measurement was performed
at CAFB using flowmeter techniques (34) in which the length
scale of the measurement is dependent on the permeability.
For the CAFB aquifer, flowmeter tests represent sampling
volumes with length scales of 4-50 m (35). Unless fine-scale
permeability measurements are performed on site, it is not
possible a priori to estimate the magnitude of error associated
with conventional large-scale testing. Even then, successful
mass transport prediction would likely require such extensive
field testing of small scale variability as to be prohibitively
expensive and would substantially alter the nature of the
aquifer materials.

Our results indicate that, unless small-scale variations in
mass flux are generally absent, it is likely that useful prediction
of subsurface mass transport is not possible using forward
techniques that rely largely upon permeability and head
measurements. How likely are small-scale variations to be
present in typical settings? This is not an easy question to
answer because of the limited information on small-scale
variations that have been obtained elsewhere. However,
assuming that high variability in conventional permeability
tests are an indication of high variability in mass flux,
comparison of this site to other sites suggests that difficulties
in prediction of subsurface mass transport will be common.

FIGURE 6. (a-c) Spatial moments of bromide in the direction of groundwater flow. Effects of updating bromide concentrations are shown
by comparing updated model runs and observed plume after 503 days of transport. Spatial moments calculated along the direction of
groundwater flow. (a) First spatial moment, position of the bromide center of mass. (b) Second spatial moment, bromide variance. (c) Third
spatial moment, bromide skewness.

TABLE 2. Groundwater Model Parameters and Results

K assignment

no.
of time
periods

day of
bromide

assignment
ø2 value

(at 503 days)

kriging 5 0 0.98
homogeneous 5 0 7.11
2 zones 5 0 7.84
simulated

annealing
5 0 plume left

model domain
kriging 1 0 1.60
kriging 6 0 0.78
kriging 10 0 0.78
kriging 5 49 1.46
kriging 5 126 0.85
kriging 5 202 0.79
kriging 5 370 0.39

VOL. 34, NO. 18, 2000 / ENVIRONMENTAL SCIENCE & TECHNOLOGY 9 4015



Our results also indicate that the common approach of
using permeability and water level measurements as input
to a computer transport model allows only the direction of
mass transport to be predicted accurately. Possible alternative
approaches are being developed, and based on our results,
we recommend them as areas of future research. One
alternative approach is to use early time transport observa-
tions to predict later time transport behavior. Distributions
of observed transport velocities can be calculated from two
plume snapshots measured at different times, and these
velocity distributions can be used to predict plume migration
over time. Another approach is to subordinate measured
permeability values to concentration measurements and
other data, use inverse solution techniques to determine
updated model permeability values, and then run the model
to predict later-time behavior. The mass-transfer approach
of Harvey and Gorelick (22), which assumes strong perme-
ability contrasts at scales <1 m such as are found at CAFB,
has the potential to improve transport predictions. But first
flow velocities must be known at the model grid scale and
methods need to be developed for estimating the required
transport parameters. Another potential method for better
characterizing mass flux is direct measurement of porewater
velocities (36).

While this site is more heterogeneous than most other
field sites where mass transport has been observed in detail,
the hydrogeologic description of the CAFB site is probably
better than for any other currently active site in the world.
When data used for predictive modeling are less compre-
hensive or less reliable, greater prediction errors can be
expected. It is likely that decision making based on predictive
models of subsurface mass transport like the one in this study
will often be arbitrary. Better decision making will likely
require better methods for characterizing subsurface mass
flux or better methods for estimating permeability such as
those mentioned above.
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